Non-standard gap

Késako?

Here's a game, entitled « non-standard gap », which lets you figure out if the person you're speaking to has a non-standard mind, or - and surely it's the same thing - if they're secretely a set theorist.

This is a two-player game where Alice and Bob play in turns. At the (n + 1)-th round, Alice sets forth¹ an ordinal $\alpha_n > 0$, then Bob proposes an ordinal β_n , with the following constraints:

$$\alpha_0 > \alpha_1 > \dots > \alpha_n > \dots \geqslant \beta_n \geqslant \dots \geqslant \beta_1 \geqslant \beta_0. \tag{1}$$

Alice loses the game in the *n*-th round if Bob submits her a winning strategy, with proof that in less than a determined number f(n) > 0 of rounds after this *n*-th one, Alice won't be able to extend her sequence while observing the constraints². Bob loses the game if he gives up or dies of thirst.

Example. Alice plays the number ω^{ω} ;

Bob plays ω^2 ; Alice plays ω^{10000} ; Bob plays $\omega^{9999} + 1$; Alice plays $\omega^{9999} + \omega^{9998}$; Bob plays $\omega^{9999} + \omega^{9997} + \omega^{9996}$; Alice plays $\omega^{9999} + \omega^{9997} 2 + \omega^{9996} 3 + \omega^{9995} 4 + \dots + \omega^{1221} 8778$.

Bob then proposes the following winning strategy:

If Alice has just played the number

$$\alpha_n = \sum_{k \leqslant 9999} \, \omega^k \, a_n(k)$$

where $a_n \in \mathbb{N}^{10000}$, then Bob will play

$$\beta_n := \sum_{k \leqslant 9999} \, \omega^k \, b_n(k),$$

where b_n is the predecessor of a_n in $[0, \max\{a_n(k): k \leq 9999\}]^{10000}$ for the appropriate lexicographical ordering. Bob claims, with proof, that Alice will lose in at most 1222 additional rounds.

Question 1. Does Bob have a winning strategy? The ordinal α_0 being fixed, does Bob have a winning strategy? If not, then which is this ordinal α_0 that is smallest, for which Bob has no winning strategy?

Question 2. Does Alice have a winning strategy?

Remark. I never lost³ a game of non-standard gap.

^{1.} defines

^{2.} that is, we'll have $\alpha_{n+k} = \beta_{n+k-1} + 1$ for a certain $k \in \{1, \ldots, f(n)\}$

^{3.} played